
A Metric Evaluation of Game Application Software

Alan C. Jamieson, Nicholas A. Kraft, Jason O. Hallstrom and Brian A. Malloy
Computer Science Department

Clemson University
Clemson, SC 29634, USA

{ajamies,nkraft,jasonoh,malloy}@cs.clemson.edu

Abstract

In this paper we evaluate the exploitation of object tech-
nology as it is used in a test suite of game application soft-
ware. We use several well-known metrics and apply them
to both the game application software and a test suite of
language processing tools to form a basis of comparing the
two groups. We have developed a metric computation sys-
tem that uses the g4re infrastructure to analyze the C++

programs. We present some results for the two groups of
applications and draw some conclusions about the modu-
larity, use of inheritance, and the complexity of methods in
these applications.

1. Introduction

As software developers shift their priorities to the con-
struction of complex large scale systems that are easy to
extend, modify, and maintain, the inadequacy of tradi-
tional approaches and methodologies becomes apparent.
The object-oriented approach to software development ad-
dresses some of these inadequacies and makes it possible to
model systems that are close to their real world analogues.
The goal of object-oriented design is to accurately identify
the principle roles in a process, assign responsibilities to
these roles and encapsulate them in an object. The benefits
of object technology are extensibility, ease of modification
and ease of reuse.

The development of game application software has fol-
lowed this pattern of migration from traditional approaches
to the exploitation of object technology for its acknowl-
edged benefits. In fact, the object-oriented paradigm seems
to have a natural application to the domain of graphics,
Graphical User Interfaces (GUIs) and game application
programming. Early games such as Quake and Doom were
implemented in C because of its small learning curve and
its fast compilation and execution speed. However, cur-
rent game development requires large teams of program-
mers and analysts as well as other kinds of talent such as

art, music, and voice. To manage large teams of program-
mers, most current game developers use the C++ language
and attempt to exploit the benefits of object technology.

In this paper we evaluate the exploitation of object tech-
nology as it is used in a test suite of game application soft-
ware. We use several well-known metrics and apply them
to both the game application software and a test suite of
language processing tools to form a basis of comparing the
two groups. We have developed a metric computation sys-
tem that uses theg4re infrastructure to analyze the C++ pro-
grams [10, 11]. We present some results for the two groups
of programs and draw some conclusions about the modu-
larity, use of inheritance and the complexity of methods in
the applications.

The literature on object-oriented software metrics is ex-
tensive; see, for example, the detailed surveys presented
in [3] and [5]. By contrast, there has been relatively little
work focused on applying metrics to assess the relative de-
sign characteristics of systems in different application do-
mains. A unique contribution of our work is the application
of object-oriented software metrics to the consideration of
gaming applications.

In the next section we provide background about the
terminology that we use, about game APIs, and about the
g4re system. In Section 3 we describe the construction of
our metric computation system and define the metrics that
we use to evaluate the exploitation of object orientation in
game application software. In Section 4 we provide results
from our evaluation of the test suite of game software and
language processing tools. In Section 5 we describe the
limited research that is similar to our work. Finally, in Sec-
tion 6 we draw conclusions and describe our future work.

2. Background

In this section we provide background about the termi-
nology and tools that we use in this paper. In Section 2.1
we review some of the Application Programmer Interfaces
(APIs) used in game development. In Section 2.2 we re-
view theg4re system that analyzes the applications in our

Submitted to The Future Play Conference
October 13–15, 2005, Michigan State University MI

test suite [10, 11]. Finally, in Section 2.3 we review the use
of metrics in the software life cycle.

2.1. Game APIs

In early game development, DOS-based games were
generally implemented with commands issued directly to
the computer’s hardware. These early DOS games used
calls to device drivers for input devices such as a mouse or
joystick and calls to specific sound cards such as Creative
Labs’ Sound Blaster. Video programming was the most
difficult aspect of game development where the generation
of fast and smooth graphics required significant program-
ming skill. Graphics code frequently exploited the speed of
assembly language programming and depended on certain
hardware-level features of the VGA graphics adapter.

Currently, few game developers write register-level
video code, instead relying on prewritten Application Pro-
grammer Interfaces (APIs) that form a layer of software be-
tween the game and the hardware. The most popular API
in current usage is DirectX using the C++ language vehi-
cle [15, 16]. The DirectX API provides low-level access
to multimedia hardware in a device-independent manner.
New versions of DirectX are released to permit game de-
velopers to take advantage of hardware advances as they
occur, even after games have shipped. However, the Di-
rectX API is specific to the Microsoft Windows platform.

With the popularity of the Linux operating system game
developers became interested in platform-independent
game programming and several APIs have been introduced,
including SVGALib, ClanLib and SDL. The most popular
of the platform-independent game APIs is the Simple Di-
rectmedia Layer (SDL) [18]. SDL is a cross-platform mul-
timedia library that has already been used to port a number
of Windows-based games to Linux.

The SDL API supports virtually all of the major op-
erating systems including Linux, Windows, Solaris and
BSD variants including FreeBSD and MacOS. In addi-
tion to fast graphics support, SDL provides interfaces for
playing sound, accessing CD-ROM drives and achieving
portable multi-threaded applications. SDL is released un-
der the GNU LGPL and has accumulated a collection of
user-contributed libraries that provide additional function-
ality for game developers.

2.2. The g4re Tool Chain

Software tools are fundamental to the comprehen-
sion, analysis, testing and debugging of application sys-
tems. Tools can automate repetitive tasks and, with large
scale systems, can enable computation that would be pro-
hibitively time consuming if performed manually. The Java
language is well supported with libraries and tools to sup-

port application development [4, 23, 25]. The lack of tool
support for applications using the C++ language is espe-
cially noteworthy.

One explanation for the lack of software tools for C++ is
the difficulty in constructing a front-end for the language,
as described in references [2, 9, 12, 20, 21, 22]. This diffi-
culty results, in part, from the complexity and scale of the
language. However, a more important problem is the ambi-
guity inherent in many C++ language constructs[9, 12, 19,
22]. Many C++ constructs cannot be recognized through
syntactic considerations alone. For example, the difficulty
in distinguishing a declaration from an expression can only
be resolved by performing name lookup[1, 9].

The g4re tool chain exploits thegccAbstract Semantic
Graph (ASG),GENERIC, to provide an Application Pro-
grammers Interface (API) to facilitate easy access to infor-
mation about declarations, including classes, functions, and
variables, as well as information about scopes, types, and
control statements. The advantages of the g4re tool chain is
that it can analyze any program that can be compiled by the
gccC++ compiler. We use the g4re tool chain to construct
our metric computation system and we describe this system
in Section 3.

2.3. Object-Oriented Metrics

Software metrics are quantitative measures that enable
software developers, testers, and maintainers to evaluate
the static properties of a software system [5]. Software
metrics are computed and the resultant data are collected,
analyzed, and compared throughout the lifetime of a soft-
ware system to evaluate improvement or deterioration of
the software system. Software metrics are also useful for
identifying problem modules of a software system.

Object-oriented metrics were introduced to measure
software properties specific to object-oriented software
systems, including properties pertaining to classes and their
object instances [3, 5]. The primary focus of object-
oriented metrics is measuring properties of classes and their
instances. Properties of interest include scope of properties,
object complexity, coupling, and cohesion.

3. Methodology

In this section we present an overview of our metrics
computation system that enables us to evaluate the ex-
ploitation of object technology in game application soft-
ware. In Section 3.1 we describe details of the system and
its use of the g4re tool chain [10, 11]. In Section 3.2 we
describe the metrics that we compute to facilitate our eval-
uation of the game software.

2

Figure 1. System overview. This figure illustrates the important components in our metrics computation
system that we constructed to compute the metrics defined in Section 3.2 and to perform the case study
presented in Section 4. The metrics computation system consists of the g 4re tool chain, including the
CppInfo API, and a Metrics Tool that interacts with the API to extract information about a C ++ program.

3.1. Overview of the Metrics Computation System

Figure 1 provides an overview of our metrics compu-
tation system that we constructed to compute the metrics
defined in Section 3.2 and to perform the case study pre-
sented in Section 4. Our metrics computation system con-
sists of the g4re tool chain, including theCppInfo API, and
a Metrics Tool that interacts with the API to extract infor-
mation about a C++ program. Output of our system is a set
of statistics for each computed metric.

Input to our system is the source code for a C++ pro-
gram, shown in the far left of the top row of the figure,
which is used as input to thegcc compiler. Using the
-fdump-translation-unit-all option, we obtain
a plain text representation of the ASG for each C++ transla-
tion unit in the program. We use these plain text ASG rep-
resentations, known astu files, as input to ourTUxformer
subsystem, shown in the middle of the top row of the fig-
ure. For eachtu file, theTUxformer subsystem creates an
in-memory representation of the encoded ASG, prunes the
ASG, and serializes the ASG to GXL.

We use the set of GXL files produced byTUxformer as
input to theg4xformer subsystem, shown in the far right
of the top row of the figure. Theg4xformer subsystem
parses each GXL file and creates an in-memory represen-
tation of the encoded ASG. The subsystem then links the
representations of each individual ASG to create a unified
representation of the entire C++ program. After linking is
complete, the subsystem filters, from the unified represen-
tation, language elements that are identified as defined in a
filename contained in the filter lists, shown in the far right
of the top row of the figure.

TheCppInfo API, shown in the far right of the bottom
row of the figure, provides access to information from the
unified representation of a whole C++ program created by
the g4xformer subsystem. OurMetrics Tool, shown in
the middle of the bottom row of the figure, instantiates and
queries the API to gain access to the information about

classes and functions needed to compute the metrics de-
fined in Section 3.2. Output of theMetrics Tool, shown in
the far left of the bottom row of the figure, is available in a
variety of formats and consists of a set of statistics for each
computed metric.

3.2. Overview of the Computed Metrics

In this section we define the object-oriented metrics that
we compute for the case study presented in Section 4. We
define one metric measuring complexity, Weighted Meth-
ods per Class, and three metrics measuring the use of inher-
itance: Depth of Inheritance Tree, Number of Ancestors,
and Number of Children. We also use additional metrics
that measure modularity and delegation.

3.2.1. Metric 1: Weighted Methods per Class (WMC).
WMC measures the complexity of an object and is an indi-
cator of the time and effort required to develop and main-
tain a class.

Given a classC with methodsM1,M2, . . . ,Mn, weighted
with cyclomatic complexityc1,c2, . . . ,cn, respectively, the
metric is computed as

WMC(C) =
n

∑
i=1

ci

Given a methodM with control flow graphG = (V,E), let
D equal the set of decision nodes inV, where a decision
node represents one of{ if, switch, for, while, do while,
catch}. The cyclomatic complexity,c, of M is the number
of linearly independent paths inG and is computed as

c(M) = |D|+1

3.2.2. Metric 2: Depth of Inheritance Tree (DIT). DIT
is the length of the maximum path from a class to the root
of its inheritance hierarchy, relates to scope of properties,
and is an indicator of the number of ancestor classes that
can potentially affect a class.

3

SDL Game Applications Language Processing Applications
ASC AvP Freespace2 Scorched3D Doxygen g4re Jikes Keystone

Version 1.16.1.0 cvs cvs 38.1 1.3.9.1 1.0.4 1.22 0.2.3
Source Files 436 509 652 1069 260 128 75 123
Translation Units 199 222 220 513 122 60 38 52
C++ Translation Units 194 95 220 492 90 60 38 52
LOC (≈) 130 K 318 K 365 K 110 K 200 K 10 K 70 K 30 K

Table 1. Testsuite of SDL Game Application Software and Language Processing Tools.

Given a classC with a set of base classesBC, the metric
is computed as

DIT (C)=
{

0 if |BC| = 0
max({DIT (Bi) : Bi ∈ BC})+1 if |BC| > 0

3.2.3. Metric 3: Number of Ancestors (NOA). NOA is
the total number of ancestor classes of a class. In the ab-
sence of multiple inheritance, NOA is equivalent to DIT. In
the presence of multiple inheritance, care must be taken to
avoid counting an ancestor class more than once, due to the
possibility of a diamond-shaped inheritance hierarchy.

3.2.4. Metric 4: Number of Children (NOC). NOC is
the number of immediate successors of a class and mea-
sures the breadth of inheritance.

Given a classC with a set of derived classesDC, the
metric is computed as

NOC(C) = |DC|

4. Case Study

In this section we describe the results that we obtained
using our metrics tool to evaluate game application soft-
ware. We evaluate game software by comparing metrics
computed for four games with four popular language pro-
cessing applications. The results that we report in this sec-
tion capture information about the sizes of the programs
and the exploitation of object technology as measured by
metrics described in Section 3. All experiments were ex-
ecuted on a workstation with anAMD Athlon64 3000+
processor, 1024 MB of PC3200 DDR RAM, and a 7200
RPM SATA hard drive, running the Slackware 10.1 operat-
ing system. The programs were compiled usinggccversion
3.3.4.

In the next section we describe the eight (8) applica-
tions that form our test suite: four game applications im-
plemented using the SDL API and four language process-
ing applications, and provide some results using coarse-
grained size metrics for the applications. In Section 4.2 we
provide results describing the modularity of game applica-
tions and in Section 4.3 we provide results describing the

use of inheritance in game applications. In Section 4.4 we
provide results describing the complexity of member func-
tions in classes. Finally, in Section 4.5 we provide results
for games implemented in DirectX.

4.1. The Test suite of Game Applications and Lan-
guage Processing Tools

Table 1 lists eight applications, or test cases, that form
the test suite that we use in our study, together with size
statistics about each test case. The top row of the ta-
ble lists the names that we use to refer to each of the
test cases. The game applications are listed in the first
four columns and the language processing applications are
listed in the last four columns. The four game applications
are: Allied Strategic Command(ASC), Alien vs Preda-
tor (AvP), Freespace 2(Freespace2), and Scorched 3d
(Scorched3D). The Application Programmer’s Interface
(API) used for the four games is the Simple Directmedia
Layer (SDL), described in Section 2. The four language
processing applications, listed in the last four columns of
Table 1, are:Doxygen, g4re, Jikes, andKeystone. Doxy-
gen is a documentation system for C++, C, and Java [26]
andg4re is part of the infrastructure for reverse engineer-
ing that we use to construct our metrics tool [10, 11].Jikes
is a Java compiler system [6] andKeystoneis a parser and
front-end for ISO C++ [8, 14].

The rows of Table 1 list some statistics and coarse-
grained size metrics for the test cases: the first row lists
the version number,Version; the second row lists the num-
ber of source files,Source Files, for each test case; the
third row lists the number of translation units,Translation
Units, which includes both C++ and C translation units; the
fourth row lists the number of C++ translation units (C++

Translation Units), which is only C++ code; and finally,
the last row of the table lists the (approximate) thousands
of lines of code (KLOC) for each test case, not counting
blank or comment lines. For example, the largest game
in our test suite isFreespace 2, a Version that we ob-
tained from a cvs repository (on July 22, 2005), consist-
ing of 652 source files, 220Translation Units and 220

4

Classes Functions
Count Abstract Root Leaf Count Member Virtual Pure

ASC 1389 58 901 390 8693 7775 2170 208
AvP 1732 28 1369 327 11548 9350 1216 90
Freespace2 332 0 320 12 9468 1687 48 0
Scorched3D 799 50 405 364 8432 7210 1907 112

Doxygen 315 9 153 157 5422 4570 2159 249
g4re 78 17 27 37 849 798 303 106
Jikes 378 5 210 158 5717 5685 602 16
Keystone 160 14 49 87 2354 2306 1178 189

Table 2. Modularity. This table presents results about the modularity of game application software.

C++ Translation Units. Since the number ofTransla-
tion Units is the same as the number ofC++ Translation
Units, theFreespace 2 test case contains no C code. The
Freespace 2 test case consists of 365KLOC, as illustrated
on the last row, third column of Table 1.

The results in Table 1 suggest that, for the test cases
that we have chosen for our study, the game applications
are larger than the language processing applications. For
example, the average number for the game applications is
231 KLOC, whereas the average number of KLOC for the
language processing applications is 78 KLOC; thus, the av-
erage game application in our test suite is three times as
large as the average language processing application.

4.2. Modularity in Game Application Software

Table 2 presents results that capture information about
the modularity of game application software. The rows in
Table 2 list the test cases, where the game applications are
listed in the first four rows and the language processing
tools are listed in the last four rows. The columns sum-
marize results describing the classes and functions in the
respective test cases: the first four columns summarize in-
formation about the classes and the last four columns sum-
marize information about the functions. For example, the
Alien vs Predator (AvP) game, listed on the second row
of the table, contains 1732 classes: 28 of the classes are ab-
stract,Abstract, 1369 of the classes contain no ancestors
in the inheritance tree,Root, and 327 of the classes contain
no children and have at least one ancestor in the inheritance
tree,Leaf. The number ofRoot andLeaf classes for the
AvP game together comprise 1696 classes so that the in-
heritance tree contained only 36 interior classes. Moreover,
the (AvP) game contains 11,548 functions,Count, 9350 of
these functions were members of a class,Member, 2170
of these functions were virtual,Virtual, and 208 of these
functions were pure virtual,Pure.

TheAvP game contains more classes than any other ap-

plication in our test suite; the second highest class total is
the ASC game containing 1389 classes. It is somewhat
surprising that theAvP game contains a large number of
classes in view of the large number of C files in the pro-
gram. The results listed in Table 1 show that theAvP game
contains 222Translation Units, but only 95 of these are
C++ Translation Units; which means that over half of the
translation units consist of C code. However, theg4re tool
uses an Abstract Syntax Graph (ASG) representation of
the input application; at the level of the ASG, all template
classes are instantiated so that the count of classes listed in
the first column of data in Table 2 includes classes and in-
stantiated template classes and all of these structures may
participate in inheritance and appear anywhere in an inher-
itance tree constructed for the Depth of Inheritance Tree,
Number of Children and Number of Ancestor metrics.

The results in Table 2 suggest that, for our test suite of
four game applications and four language processing tools,
the game applications may be more modular than the lan-
guage processing tools. For example, the total number of
classes in the four game applications is 4252 classes. The
results in Section 4.1 show that the total KLOC for the four
game applications is 923 KLOC, for a classes to KLOC ra-
tio of 4.6. Similarly, the total number of classes in the four
language processing tools is 931 classes. The results in
Section 4.1 show that the total KLOC for the four language
processing tools is 310 KLOC, for a classes to KLOC ratio
of 3.0.

4.3. Inheritance in Game Application Software

Tables 3 and 4 present results for theDepth of Inher-
itance Tree(DIT) and Number of Children(NOC) met-
rics respectively. Due to space limitations, we have elided
the results for theNumber of Ancestors(NOA) metric; the
interested reader may consult reference [7] for results on
the NOA metric. The rows in Tables 3 and 4 list the test
cases. The columns list results for the metrics, where the

5

M
in

M
ax

M
ea

n

S
td

D
ev

M
ed

ia
n

M
od

e

ASC 0 4 0.6451 0.9906 0 0
AvP 0 5 0.3043 0.7068 0 0
Freespace2 0 1 0.0361 0.1869 0 0
Scorched3D 0 9 0.9312 1.4957 0 0

Doxygen 0 4 0.9270 1.1220 1 0
g4re 0 5 1.8974 1.5921 2 0
Jikes 0 3 0.7143 0.9596 0 0
Keystone 0 5 1.7938 1.4498 2 0

Table 3. Depth Of Inheritance Tree.

M
in

M
ax

M
ea

n

S
td

D
ev

M
ed

ia
n

M
od

e

ASC 0 27 0.3139 1.5496 0 0
AvP 0 30 0.1207 0.8497 0 0
Freespace2 0 12 0.0361 0.6586 0 0
Scorched3D 0 11 0.2003 0.9122 0 0

Doxygen 0 48 0.3587 2.7672 0 0
g4re 0 6 0.4872 1.1705 0 0
Jikes 0 26 0.4550 2.4741 0 0
Keystone 0 10 0.6063 1.6563 0 0

Table 4. Number of Children.

first three columns list the minimum,Min, the maximum,
Max and the mean,Mean, values for the respective met-
rics. The final three columns in the tables list the standard
deviation from the mean,Std Dev, the median,Median
and the mode,Mode. The median value is the value for
which an equal number of values lie above and below the
median; the mode is the most common value.

The DIT metric measures the length of the maximum
path from a class to the root of the inheritance tree and the
NOC metric measures the number of immediate successors
of a class in the inheritance tree. Intuitively, the DIT metric
measures the depth of the inheritance tree and the NOC
metric measures the breadth of the inheritance tree.

4.3.1. Depth of Inheritance (DIT). Table 3 presents the
results for DIT that we computed for the eight test cases.
For example, the fourth row of Table 3 lists DIT results for
theScorched3D game with a minimum depth of 0 and a
maximum depth of 9, the longest inheritance depth of all of
the test programs. Moreover, theScorched3D game had
the largest mean value, 0.09312, and the largest standard

M
in

M
ax

M
ea

n

S
td

D
ev

M
ed

ia
n

M
od

e

ASC 0 561 12.9770 30.3646 4 0
AvP 0 107 7.2898 10.5944 3 3
Freespace2 0 123 6.6596 15.7072 3 3
Scorched3D 0 240 17.3717 19.0581 12 3

Doxygen 0 430 27.6762 57.4967 7 7
g4re 0 206 17.7564 30.2694 13 0
Jikes 0 2016 32.3968 119.1240 13 10
Keystone 0 557 24.3875 52.4735 15 14

Table 5. Weighted Methods per Class.

deviation, 1.4957, so that this test case had the largest vari-
ance in the depth of its inheritance tree. The median and
mode for theScorched3D game are listed in the last two
columns of the fourth row and these values are zero, as they
are for all of the game application test cases.

4.3.2. Number of Children (NOC). Table 4 presents the
results for NOC that we computed for the eight test cases.
For example, the second row of Table 4 lists NOC results
for the Alien vs Predator game (AvP) with a minimum
number of children of 0 and a maximum number of chil-
dren of 30, the broadest inheritance tree of all of the test
programs. TheAvP game had a mean value of 0.1207, and
a standard deviation of 0.8497, the largest variance in NOC
for any of the test cases. The median and mode for theAvP
game are listed in the last two columns of the second row
and these values are zero, as they are for all of the game
application test cases.

The results in Table 4 suggest that the inheritance trees
for language processing tools are broader than the inheri-
tance trees for game applications. The average of theMax
values for language processing tools is 22.5 classes and
the average of theMax values for game applications is 20
classes. However, the classes to maximum breadth ratio of
the language processing tools is 41.37 and for the language
tools is 212.6.

4.4. Complexity in Game Application Software

Table 5 presents results for theWeighted Methods per
Class(WMC) metric. The rows in the table list the test
cases. The columns list results for the WMC metric, where
the first three columns list the minimum,Min, the maxi-
mum,Max and the mean,Mean, values for weighted meth-
ods. The final three columns in the tables list the standard
deviation from the mean,Std Dev, the median,Median
and the mode,Mode.

6

A
lle

gi
an

ce

C
iv

:C
tP

2

B
oB

F
re

es
pa

ce
2

Source Files 1135 2081 1132 649
Classes 1938 1963 715 110
DIT 9 7 11 7
NOC 49 312 123 39
LOC(≈) 331K 665K 451K 416K

Table 6. Testsuite of DirectX Game Application
Software.

The results in Table 5 show that the methods in the lan-
guage processing tools are more complex than the methods
in the game application software. For example, the average
maximum value of the language processing tools is 802.25,
whereas the maximum value of the game applications is
only 257.75. Similarly, the averageMean value for the
language processing tools is 25.55, whereas the avereage
Mean value for the game applications is only 11.07.

4.5. Results for the DirectX API

In this section we describe some preliminary results that
we obtained for four commercial games implemented with
the DirectX API. Our ongoing work includes the construc-
tion of an analysis system for the Windows platform that
will enable us to automate our analysis and metric compu-
tation. The results in this section were computed by hand
and we present them to provide some basis for comparison
with the SDL game application software and the language
processing tools presented in the first part of this section.

Table 6 lists four games implemented with the Di-
rectX API. The games areAllegiance (ALLEGIANCE)
from Microsoft Research,Civilization: Call to Power
2 (CIV:CTP2) from Activision, Battle of Britain (BOB)
from Empire Interactive andDescent: Freespace 2
(FREESPACE2) from Volition Inc. The first row of the table
contains information about the number of source files and
the second row lists the number of classes. In computing
the number of classes we counted template classes and not
their instantiations. The third row of Table 6 lists the max-
imum depth of the inheritance tree (DIT) and the fourth
row lists the maximum number of children (NOC). Finally,
the last row of the table lists the lines of code KLOC, not
including blank or comment lines.

5. Related Work

The literature on object-oriented software metrics is ex-
tensive; see, for example, the detailed survey presented in
[3] and [5]. By contrast, there has been relatively little work
focused on applying metrics to assess the relative design
characteristics of systems in different application domains.
Further, our work is unique in its consideration of gaming
applications. Other researchers have, however, considered
comparisons that are similar in spirit to our own. In this
section, we briefly consider several relevant studies.

Paulsonet al. [17] perform an empirical evaluation of
the differences between open-source and proprietary soft-
ware. Their goal is to evaluate the validity of common per-
ceptions regarding open-source projects. Their study con-
siders five dimensions of comparison: (i) system growth,
(ii) design creativity, (iii) complexity, (iv) reliability, and
(v) modularity. For each dimension of comparison, they
apply a series of metrics to a testsuite consisting of three
open-source projects and three proprietary projects. Based
on the resulting figures, the authors conclude that relative
to their proprietary counterparts, open-source projects (i)
do not grow faster, (ii) foster more creativity, (iii) are more
complex, (iv) are more reliable, and (v) are less modular.
We note that we share the authors’ interest in complex-
ity and modularity, and use a similar metric for evaluating
complexity.

MacCormacket al. [13] focus on the modularity of
open-source software. Their approach is novel in its use of
metrics defined overdesign structure matrixes[24]. Each
matrix captures the dependencies between the source files
in a given implementation. A value of one at position(i, j)
denotes the existence of a call from a function defined in
file i to a function defined in filej. Similarly, a zero value
denotes the absence of such a call. The authors consider
two metrics. The first metric estimates the number of files
affected, on average, by an arbitrary system change. The
second metric is based on a clustering algorithm that groups
collections of interdependent files. The metric estimates
the cost of coordination between the individuals responsi-
ble for implementing the various elements by allocating a
higher cost tointer-cluster dependencies, and a lower cost
to intra-cluster dependencies. When applied to their test-
suite, which consists of one open-source system and one
proprietary system, the resulting figures contradict the re-
sults of Paulsonet al.: the open-source system appears
more modular. Later, however, the authors evaluate a major
redesign of the proprietary system which fares better: it is
more modular than the open-source system. We note that
the size of the testsuite makes it difficult to draw definitive
conclusions.

7

6. Conclusions and Future Work

In this paper we have evaluated the exploitation of ob-
ject technology in a test suite of game application software.
We used metrics that describe the size, modularity, delega-
tion, inheritance, and complexity of the applications. We
developed a metric computation system that uses theg4re
infrastructure to analyze the C++ programs [10, 11], and we
use the system to apply the metrics to the game application
software and a test suite of language processing tools to
form a basis of comparing the applications in the two do-
mains. Our game applications are implemented using the
SDL [18] and DirectX APIs.

We have shown that, for our test suite, the game applica-
tions are more modular than the language processing tools
and that the methods in the game applications are less com-
plex than the methods in the language processing tools. Our
metrics computation system does not include library code
in its analysis and it is likely that much of the complexity
of the methods is game applications lies in the SDL or Di-
rectX APIs. Our future work includes modification of the
g4re infrastructure to extrapolate the number of template
classes rather than the number of instantiations of template
classes. We are also extending theg4re infrastructure to
automate computation of the DirectX metrics.

References

[1] American National Standards Institute. International
Standard: Programming Languages - C++. Number
14882:1998(E) in ASC X3. ISO/IEC JTC 1, September
1998.

[2] F. Bodin, P. Beckman, D. Gannon, J. Gotwals, S. Narayana,
S. Srinivas, and B. Winnicka. Sage++: An object-oriented
toolkit and class library for building Fortran and C++ re-
structuring tools. InThe second annual object-oriented
numerics conference (OON-SKI), pages 122–136, Sunriver,
Oregon, USA, 1994.

[3] Shyam R. Chidamber and Chris F. Kemerer. A metrics
suite for object oriented design.IEEE Trans. Software Eng.,
20(6):476–493, 1994.

[4] S. F. Cohen. Quest for Java.Communications of the ACM,
41(1):81–83, January 1997.

[5] Norman E. Fenton and Shari Lawrence Pfleeger.Software
Metrics: A Rigorous and Practical Approach. PWS Pub-
lishing Co., Boston, MA, USA, 1998.

[6] IBM Jikes Project. Jikes version 1.22. Available at
http://jikes.sourceforge.net.

[7] A. C. Jamieson, N. A. Kraft, J. O. Hallstrom, and B. A.
Malloy. A metric evaluation of game software. Technical
report, Clemson University, 2005.

[8] Keystone Project. Keystone version 0.2.3. Available at
http://keystone.sourceforge.net.

[9] Gregory Knapen, Bruno Lague, Michel Dagenais, and Et-
tore Merlo. Parsing C++ despite missing declarations. In7th

International Workshop on Program Comprehension, Pitts-
burgh, PA, USA, May 5-7 1999.

[10] N. A. Kraft, B. A. Malloy, and J. F. Power.g4re: Harness-
ing gcc to reverse engineer C++ applications. InSeminar
No. 05161: Transformation Techniques in Software Engi-
neering, Schloss Dagstuhl, Germany, April 17-22 2005.

[11] N. A. Kraft, B. A. Malloy, and J. F. Power. Toward an infras-
tructure to support interoperability in reverse engineering.
In Proceedings of the 12th Working Conference on Reverse
Engineering, WCRE’005, Pittsbrugh, PA, November 2005.

[12] John Lilley. PCCTS-based LL(1) C++ parser: Design and
theory of operation. Version 1.5, February 1997.

[13] A. MacCormack, J. Rusnak, and C. Baldwin. Exploring the
structure of complex software designs: An empirical study
of open source and proprietary code. Working Paper 05-016,
Harvard Business School, Boston, MA, USA, 2004.

[14] B. A. Malloy, T. H. Gibbs, and J. F. Power. Decorat-
ing tokens to facilitate recognition of ambiguous language
constructs.Software, Practice & Experience, 33(1):19–39,
2003.

[15] I. Parberry.Learn Computer Game Programming with Di-
rectX 7.0. Woodward Publishing Co., Plano, TX, USA,
2000.

[16] Ian Parberry, Timothy Roden, and Max B. Kazemzadeh. Ex-
perience with an industry-driven capstone course on game
programming: extended abstract.SIGCSE Bull., 37(1):91–
95, 2005.

[17] J.W. Paulson, G. Succi, and A. Eberlein. An empirical
study of open-source and closed-source software products.
IEEE Transactions on Software Engineering, 30(4):246–
256, 2004.

[18] E. Pazera.Focus on SDL. Premier Press, Cincinnati, OH,
2003.

[19] J. F. Power and B. A. Malloy. Metric-based analysis of
context-free grammars. InProceedings of the 8th Inter-
national Workshop on Program Comprehension, Limerick,
Ireland, June 2000.

[20] J. F. Power and B. A. Malloy. Symbol table construction
and name lookup in ISO C++. In37th International Con-
ference on Technology of Object-Oriented Languages and
Systems, (TOOLS Pacific 2000), pages 57–68, Sydney, Aus-
tralia, November 2000.

[21] S.P. Reiss and T. Davis. Experiences writing object-oriented
compiler front ends. Technical report, Brown University,
January 1995.

[22] J.A. Roskind. A YACC-able C++ 2.1 grammar, and the re-
sulting ambiguities. Independent Consultant, Indialantic FL,
1989.

[23] S. Singhal and B. Nguyen. The Java factor.Communications
of the ACM, 41(6):34–37, June 1998.

[24] D.V. Steward. The design structure system: A method for
managing the design of complex systems.IEEE Transac-
tions on Engineering Management, 28(3):71–84, 1981.

[25] P. Tyma. Why are we using Java.Communications of the
ACM, 41(6):38–42, June 1998.

[26] D. van Heesch. Doxygen version 1.3.9.1. Available at
http://stack.nl/ dimitri/doxygen.

8

